Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
2.
Radiol Cardiothorac Imaging ; 6(2): e230098, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512024

RESUMO

Purpose To develop an approach for in vivo detection of interstitial cardiac fibrosis using PET with a peptide tracer targeting proteolyzed collagen IV (T-peptide). Materials and Methods T-peptide was conjugated to the copper chelator MeCOSar (chemical name, 5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid) and radiolabeled with copper 64 (64Cu). PET/CT scans were acquired following intravenous delivery of 64Cu-T-peptide-MeCOSar (0.25 mg/kg; 18 MBq ± 2.7 [SD]) to male transgenic mice overexpressing ß2-adrenergic receptors with intermediate (7 months of age; n = 4 per group) to severe (10 months of age; n = 11 per group) cardiac fibrosis and their wild-type controls. PET scans were also performed following coadministration of the radiolabeled probe with nonlabeled T-peptide in excess to confirm binding specificity. PET data were analyzed by t tests for static scans and analysis of variance tests (one- or two-way) for dynamic scans. Results PET/CT scans revealed significantly elevated (2.24-4.26-fold; P < .05) 64Cu-T-peptide-MeCOSar binding in the fibrotic hearts of aged transgenic ß2-adrenergic receptor mice across the entire 45-minute acquisition period compared with healthy controls. The cardiac tracer accumulation and presence of diffuse cardiac fibrosis in older animals were confirmed by gamma counting (P < .05) and histologic evaluation, respectively. Coadministration of a nonradiolabeled probe in excess abolished the elevated radiotracer binding in the aged transgenic hearts. Importantly, PET tracer accumulation was also detected in younger (7 months of age) transgenic mice with intermediate cardiac fibrosis, although this was only apparent from 20 minutes following injection (1.6-2.2-fold binding increase; P < .05). Conclusion The T-peptide PET tracer targeting proteolyzed collagen IV provided a sensitive and specific approach of detecting diffuse cardiac fibrosis at varying degrees of severity in a transgenic mouse model. Keywords: Diffuse Cardiac Fibrosis, Molecular Peptide Probe, Molecular Imaging, PET/CT © RSNA, 2024.


Assuntos
Cobre , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Masculino , Animais , Camundongos , Sondas Moleculares , Tomografia por Emissão de Pósitrons , Imagem Molecular , Camundongos Transgênicos , Colágeno Tipo IV , Fibrose , Peptídeos
3.
Nanoscale Adv ; 5(18): 4873-4880, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705773

RESUMO

The strengths of Magnetic Particle Imaging (MPI) lay in its sensitivity, quantitative nature, and lack of signal attenuation for Superparamagnetic Iron Oxide Nanoparticles (SPION). These advantages make MPI a powerful tool for the non-invasive monitoring of tracer behaviour over time. With more MPI studies emerging, a standardized method for determining the boundaries of a region of interest (ROI) and iron quantification is crucial. The current approaches are inconsistent, making it challenging to compare studies, hindering MPI progression. Here we showcase three different ROI selection methods for the quantification of iron in vivo and ex vivo. Healthy mice were intravenously administered a long circulating tracer, never before applied in MPI, and the ROI methods were tested for their ability to accurately quantify the total signal present, in addition to the accumulation of the tracer in individual organs. We discuss how the quantified iron amount can be vastly altered based on the choice of ROI, the importance of the standard curve and the challenges associated with each method. Lastly, the user variability and accuracy of each method was compared by 3 independent users to ensure their consistency and lack of bias.

4.
Adv Mater ; 35(21): e2210392, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908046

RESUMO

Glucose-responsive insulin-delivery platforms that are sensitive to dynamic glucose concentration fluctuations and provide both rapid and prolonged insulin release have great potential to control hyperglycemia and avoid hypoglycemia diabetes. Here, biodegradable and charge-switchable phytoglycogen nanoparticles capable of glucose-stimulated insulin release are engineered. The nanoparticles are "nanosugars" bearing glucose-sensitive phenylboronic acid groups and amine moieties that allow effective complexation with insulin (≈95% loading capacity) to form nanocomplexes. A single subcutaneous injection of nanocomplexes shows a rapid and efficient response to a glucose challenge in two distinct diabetic mouse models, resulting in optimal blood glucose levels (below 200 mg dL-1 ) for up to 13 h. The morphology of the nanocomplexes is found to be key to controlling rapid and extended glucose-regulated insulin delivery in vivo. These studies reveal that the injected nanocomplexes enabled efficient insulin release in the mouse, with optimal bioavailability, pharmacokinetics, and safety profiles. These results highlight a promising strategy for the development of a glucose-responsive insulin delivery system based on a natural and biodegradable nanosugar.


Assuntos
Diabetes Mellitus Experimental , Camundongos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Glucose , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/uso terapêutico , Insulina
5.
Blood Adv ; 7(4): 561-574, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35482909

RESUMO

Thrombolysis with tissue-type plasminogen activator (tPA) remains the main treatment for acute ischemic stroke. Nevertheless, tPA intervention is limited by a short therapeutic window, low recanalization rates, and a risk of intracranial hemorrhage (ICH), highlighting the clinical demand for improved thrombolytic drugs. We examined a novel thrombolytic agent termed "SCE5-scuPA," comprising a single-chain urokinase plasminogen activator (scuPA) fused with a single-chain antibody (SCE5) that targets the activated glycoprotein IIb/IIIa platelet receptor, for its effects in experimental stroke. SCE5-scuPA was first tested in a whole blood clot degradation assay to show the benefit of platelet-targeted thrombolysis. The tail bleeding time, blood clearance, and biodistribution were then determined to inform the use of SCE5-scuPA in mouse models of photothrombotic stroke and middle cerebral artery occlusion against tenecteplase. The impacts of SCE5-scuPA on motor function, ICH, blood-brain barrier (BBB) integrity, and immunosuppression were evaluated. Infarct size was measured by computed tomography imaging and magnetic resonance imaging. SCE5-scuPA enhanced clot degradation ex vivo compared with its nonplatelet-targeting control. The maximal SCE5-scuPA dose that maintained hemostasis and a rapid blood clearance was determined. SCE5-scuPA administration both before and 2 hours after photothrombotic stroke reduced the infarct volume. SCE5-scuPA also improved neurologic deficit, decreased intracerebral blood deposits, preserved the BBB, and alleviated immunosuppression poststroke. In middle cerebral artery occlusion, SCE5-scuPA did not worsen stroke outcomes or cause ICH, and it protected the BBB. Our findings support the ongoing development of platelet-targeted thrombolysis with SCE5-scuPA as a novel emergency treatment for acute ischemic stroke with a promising safety profile.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Trombose , Camundongos , Animais , AVC Isquêmico/complicações , AVC Isquêmico/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Distribuição Tecidual , Terapia Trombolítica/efeitos adversos , Fibrinolíticos/uso terapêutico , Acidente Vascular Cerebral/etiologia , Ativador de Plasminogênio Tipo Uroquinase , Trombose/tratamento farmacológico , Complexo Glicoproteico GPIIb-IIIa de Plaquetas
6.
Chemistry ; 29(11): e202202491, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36451579

RESUMO

A highly effective 2-step system for site-specific antibody modification and conjugation of the monoclonal antibody Herceptin (commercially available under Trastuzumab) in a cysteine-independent manner was used to generate labelled antibodies for in vivo imaging. The first step contains redox-activated chemical tagging (ReACT) of thioethers via engineered methionine residues to introduce specific alkyne moieties, thereby offering a novel easy way to fundamentally change the process of antibody bioconjugation. The second step involves modification of the introduced alkyne via azide-alkyne cycloaddition 'click' conjugation. The versatility of this 2-step approach is demonstrated here by the selective incorporation of a fluorescent dye but can also be applied to a wide variety of different conjugation partners depending on the desired application in a facile manner. Methionine-modified antibodies were characterised in vitro, and the diagnostic potential of the most promising variant was further analysed in an in vivo xenograft animal model using a fluorescence imaging modality. This study demonstrates how methionine-mediated antibody conjugation offers an orthogonal and versatile route to the generation of tailored antibody conjugates with in vivo applicability.


Assuntos
Metionina , Neoplasias , Animais , Humanos , Trastuzumab , Anticorpos Monoclonais/química , Racemetionina , Alcinos/química , Azidas/química
7.
Ultrason Sonochem ; 90: 106183, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36201933

RESUMO

Nisin, a peptide used as a natural food preservative, is employed in this work for the development of a novel nanocarrier system. Stable and uniform nisin-shelled nanoemulsions (NSNE) with a diameter of 100 ± 20 nm were successfully prepared using 20 kHz flow-through ultrasonication technique. The NSNE showed limited toxicity, high bactericidal activity and high drug loading capacity (EE 65 % w/w). In addition, the nisin shell was exploited for the site-specific attachment of a recombinantly produced cancer targeting ligand (αHER2LPETG IgG). Employing a unique two phases (bio-click) approach which involved both Sortase A mediated Azide Bioconjugation (SMAB) and Strain Promoted Azide Alkyne Cycloaddition (SPAAC) reactions, targeted NSNE (NSNEDOX-αHER2 IgG) were successfully assembled and loaded with the chemotherapeutic drug Doxorubicin (DOX). Finally, NSNEDOX-αHER2 IgG showed cancer-specific binding and augmented cytotoxicity to HER2 expressing tumour cells.


Assuntos
Neoplasias , Nisina , Humanos , Azidas , Nisina/farmacologia , Doxorrubicina/farmacologia , Imunoglobulina G
8.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805892

RESUMO

Positron emission tomography is the imaging modality of choice when it comes to the high sensitivity detection of key markers of thrombosis and inflammation, such as activated platelets. We, previously, generated a fluorine-18 labelled single-chain antibody (scFv) against ligand-induced binding sites (LIBS) on activated platelets, binding it to the highly abundant platelet glycoprotein integrin receptor IIb/IIIa. We used a non-site-specific bio conjugation approach with N-succinimidyl-4-[18F]fluorobenzoate (S[18F]FB), leading to a mixture of products with reduced antigen binding. In the present study, we have developed and characterised a novel fluorine-18 PET radiotracer, based on this antibody, using site-specific bio conjugation to engineer cysteine residues with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). ScFvanti-LIBS and control antibody mut-scFv, with engineered C-terminal cysteine, were reduced, and then, they reacted with N-[2-(4-[18F]fluorobenzamido)ethyl]maleimide ([18F]FBEM). Radiolabelled scFv was injected into mice with FeCl3-induced thrombus in the left carotid artery. Clots were imaged in a PET MR imaging system, and the amount of radioactivity in major organs was measured using an ionisation chamber and image analysis. Assessment of vessel injury, as well as the biodistribution of the radiolabelled scFv, was studied. In the in vivo experiments, we found uptake of the targeted tracer in the injured vessel, compared with the non-injured vessel, as well as a high uptake of both tracers in the kidney, lung, and muscle. As expected, both tracers cleared rapidly via the kidney. Surprisingly, a large quantity of both tracers was taken up by organs with a high glutathione content, such as the muscle and lung, due to the instability of the maleimide cysteine bond in vivo, which warrants further investigations. This limits the ability of the novel antibody radiotracer 18F-scFvanti-LIBS to bind to the target in vivo and, therefore, as a useful agent for the sensitive detection of activated platelets. We describe the first fluorine-18 variant of the scFvanti-LIBS against activated platelets using site-specific bio conjugation.


Assuntos
Cisteína , Trombose , Animais , Anticorpos/metabolismo , Plaquetas/metabolismo , Cisteína/metabolismo , Maleimidas/metabolismo , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Trombose/metabolismo , Distribuição Tecidual
9.
Mol Imaging Biol ; 24(4): 519-525, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35301641

RESUMO

Mentorship is a fundamental aspect that contributes to the success of a career in science, technology, engineering, and mathematics (STEM), particularly in academia. Research suggests that underrepresented minorities (URMs) often experience less quality mentorship and face barriers to finding successful mentor-mentee relationships. URM trainees in STEM face challenges that are not encountered by their majority peers or mentors, adding another level of complexity to establishing important relationships. Mentors of URM trainees must therefore mentor beyond general scientific training and tailor their mentorship to be more culturally appropriate and inclusive, allowing URM trainees to bring their whole selves to the table and leading to their effective socialization. Herein, we present the perspectives of group leaders and trainees from around the globe to highlight key aspects of creating successful mentor-mentee relationships that are sustainable and productive for both parties.


Assuntos
Engenharia , Mentores , Humanos , Tecnologia
10.
Adv Mater ; 34(21): e2106607, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34866253

RESUMO

Antibody (Ab)-targeted nanoparticles are becoming increasingly important for precision medicine. By controlling the Ab orientation, targeting properties can be enhanced; however, to afford such an ordered configuration, cumbersome chemical functionalization protocols are usually required. This aspect limits the progress of Abs-nanoparticles toward nanomedicine translation. Herein, a novel one-step synthesis of oriented monoclonal Ab-decorated metal-organic framework (MOF) nanocrystals is presented. The crystallization of a zinc-based MOF, Zn2 (mIM)2 (CO3 ), from a solution of Zn2+ and 2-methylimidazole (mIM), is triggered by the fragment crystallizable (Fc) region of the Ab. This selective growth yields biocomposites with oriented Abs on the MOF nanocrystals (MOF*Ab): the Fc regions are partially inserted within the MOF surface and the antibody-binding regions protrude from the MOF surface toward the target. This ordered configuration imparts antibody-antigen recognition properties to the biocomposite and shows preserved target binding when compared to the parental antibodies. Next, the biosensing performance of the system is tested by loading MOF*Ab with luminescent quantum dots (QD). The targeting efficiency of the QD-containing MOF*Ab is again, fully preserved. The present work represents a simple self-assembly approach for the fabrication of antibody-decorated MOF nanocrystals with broad potential for sensing, diagnostic imaging, and targeted drug delivery.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Pontos Quânticos , Anticorpos , Luminescência , Estruturas Metalorgânicas/química , Pontos Quânticos/química
11.
J Am Heart Assoc ; 10(18): e022139, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34514814

RESUMO

Background Cardiac fibrosis is the excessive deposition of extracellular matrix in the heart, triggered by a cardiac insult, aging, genetics, or environmental factors. Molecular imaging of the cardiac extracellular matrix with targeted probes could improve diagnosis and treatment of heart disease. However, although this technology has been used to demonstrate focal scarring arising from myocardial infarction, its capacity to demonstrate extracellular matrix expansion and diffuse cardiac fibrosis has not been assessed. Methods and Results Here, we report the use of collagen-targeted peptides labeled with near-infrared fluorophores for the detection of diffuse cardiac fibrosis in the ß2-AR (ß-2-adrenergic receptor) overexpressing mouse model and in ischemic human hearts. Two approaches were evaluated, the first based on a T peptide that binds matrix metalloproteinase-2-proteolyzed collagen IV, and the second on the cyclic peptide EP-3533, which targets collagen I. The systemic and cardiac uptakes of both peptides (intravenously administered) were quantified ex vivo by near-infrared imaging of whole organs, tissue sections, and heart lysates. The peptide accumulation profiles corresponded to an immunohistochemically-validated increase in collagen types I and IV in hearts of transgenic mice versus littermate controls. The T peptide could encouragingly demonstrate both the intermediate (7 months old) and severe (11 months old) cardiomyopathic phenotypes. Co-immunostainings of fluorescent peptides and collagens, as well as reduced collagen binding of a control peptide, confirmed the collagen specificity of the tracers. Qualitative analysis of heart samples from patients with ischemic cardiomyopathy compared with nondiseased donors supported the collagen-enhancement capabilities of these peptides also in the clinical settings. Conclusions Together, these observations demonstrate the feasibility and translation potential of molecular imaging with collagen-binding peptides for noninvasive imaging of diffuse cardiac fibrosis.


Assuntos
Colágeno , Coração , Miocárdio , Peptídeos , Animais , Colágeno/metabolismo , Fibrose , Coração/diagnóstico por imagem , Humanos , Camundongos , Imagem Molecular , Peptídeos/metabolismo
12.
Chem Sci ; 12(21): 7350-7360, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-34163824

RESUMO

The morphology of nanomaterials critically influences their biological interactions. However, there is currently a lack of robust methods for preparing non-spherical particles from biocompatible materials. Here, we combine 'living' crystallisation-driven self-assembly (CDSA), a seeded growth method that enables the preparation of rod-like polymer nanoparticles, with poly(2-oxazoline)s (POx), a polymer class that exhibits 'stealth' behaviour and excellent biocompatibility. For the first time, the 'living' CDSA process was carried out in pure water, resulting in POx nanorods with lengths ranging from ∼60 to 635 nm. In vitro and in vivo study revealed low immune cell association and encouraging blood circulation times, but little difference in the behaviour of POx nanorods of different length. The stealth behaviour observed highlights the promising potential of POx nanorods as a next generation stealth drug delivery platform.

13.
EBioMedicine ; 65: 103252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33640794

RESUMO

BACKGROUND: A research priority in finding a cure for HIV is to establish methods to accurately locate and quantify where and how HIV persists in people living with HIV (PLWH) receiving suppressive antiretroviral therapy (ART). Infusing copper-64 (64Cu) radiolabelled broadly neutralising antibodies targeting HIV envelope (Env) with CT scan and positron emission tomography (PET) identified HIV Env in tissues in SIV infected non-human primates . We aimed to determine if a similar approach was effective in people living with HIV (PLWH). METHODS: Unmodified 3BNC117 was compared with 3BNC117 bound to the chelator MeCOSar and 64Cu (64Cu-3BNC117) in vitro to assess binding and neutralization. In a clinical trial 64Cu-3BNC117 was infused into HIV uninfected (Group 1), HIV infected and viremic (viral load, VL >1000 c/mL; Group 2) and HIV infected aviremic (VL <20 c/mL; Group 3) participants using two dosing strategies: high protein (3mg/kg unlabeled 3BNC117 combined with <5mg 64Cu-3BNC117) and trace (<5mg 64Cu-3BNC117 only). All participants were screened for 3BNC117 sensitivity from virus obtained from viral outgrowth. Magnetic resonance imaging (MRI)/PET and pharmacokinetic assessments (ELISA for serum 3BNC117 concentrations and gamma counting for 64Cu) were performed 1, 24- and 48-hours post dosing. The trial (clincialtrials.gov NCT03063788) primary endpoint was comparison of PET standard uptake values (SUVs) in regions of interest (e.g lymph node groups and gastrointestinal tract). FINDINGS: Comparison of unmodified and modified 3BNC117 in vitro demonstrated no difference in HIV binding or neutralisation. 17 individuals were enrolled of which 12 were dosed including Group 1 (n=4, 2 high protein, 2 trace dose), Group 2 (n=6, 2 high protein, 4 trace) and Group 3 (n=2, trace only). HIV+ participants had a mean CD4 of 574 cells/microL and mean age 43 years. There were no drug related adverse effects and no differences in tissue uptake in regions of interest (e.g lymph node gut, pharynx) between the 3 groups. In the high protein dosing group, serum concentrations of 3BNC117 and gamma counts were highly correlated demonstrating that 64Cu-3BNC117 remained intact in vivo. INTERPRETATION: In PLWH on or off ART, the intervention of infusing 64Cu-3BNC117 and MRI/PET imaging over 48 hours, was unable to detect HIV-1 env expression in vivo. Future studies should investigate alternative radiolabels such as zirconium which have a longer half-life in vivo. FUNDING: Funded by the Alfred Foundation, The Australian Centre for HIV and Hepatitis Virology Research with additional support from the Division of AIDS, National Institute of Allergy and Infectious Disease, US National Institutes of Health (USAI126611). JHM and SRL are supported by the Australian National Health and Medical Research Council.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Infecções por HIV/diagnóstico por imagem , HIV-1/imunologia , Compostos Radiofarmacêuticos/administração & dosagem , Adulto , Antirretrovirais/uso terapêutico , Anticorpos Monoclonais/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Estudos de Casos e Controles , Radioisótopos de Cobre/química , Feminino , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/isolamento & purificação , HIV-1/metabolismo , Meia-Vida , Humanos , Marcação por Isótopo , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada por Raios X
14.
Biomacromolecules ; 20(9): 3592-3600, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31448896

RESUMO

Drug carriers typically require both stealth and targeting properties to minimize nonspecific interactions with healthy cells and increase specific interaction with diseased cells. Herein, the assembly of targeted poly(ethylene glycol) (PEG) particles functionalized with cyclic peptides containing Arg-Gly-Asp (RGD) (ligand) using a mesoporous silica templating method is reported. The influence of PEG molecular weight, ligand-to-PEG molecule ratio, and particle size on cancer cell targeting to balance stealth and targeting of the engineered PEG particles is investigated. RGD-functionalized PEG particles (PEG-RGD particles) efficiently target U-87 MG cancer cells under static and flow conditions in vitro, whereas PEG and cyclic peptides containing Arg-Asp-Gly (RDG)-functionalized PEG (PEG-RDG) particles display negligible interaction with the same cells. Increasing the ligand-to-PEG molecule ratio improves cell targeting. In addition, the targeted PEG-RGD particles improve cell uptake via receptor-mediated endocytosis, which is desirable for intracellular drug delivery. The PEG-RGD particles show improved tumor targeting (14% ID g-1) when compared with the PEG (3% ID g-1) and PEG-RDG (7% ID g-1) particles in vivo, although the PEG-RGD particles show comparatively higher spleen and liver accumulation. The targeted PEG particles represent a platform for developing particles aimed at balancing nonspecific and specific interactions in biological systems.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Oligopeptídeos/farmacologia , Polietilenoglicóis/farmacologia , Animais , Linhagem Celular Tumoral , Citoplasma/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Humanos , Ligantes , Oligopeptídeos/química , Polietilenoglicóis/química , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Dióxido de Silício/farmacologia , Propriedades de Superfície
15.
Methods Mol Biol ; 2033: 67-80, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332748

RESUMO

The current advances in nanoengineered materials coupled with the precise targeting capability of recombinant antibodies can create nanoscale diagnostics and therapeutics which show enhanced accumulation and extended retention at a target tissue. Smaller antibodies such as single-chain variable fragments (scFv) preserve the selective and strong binding of their parent antibody to their antigen with the benefits of low immunogenicity, more efficient tissue penetration and easy introduction of functional residues suitable for site-specific conjugation. This is of high importance as nonspecific antibody modification often involves attachment to free cysteine or lysine amino acids which may reside in the active site, leading to reduced antigen binding.In this chapter, we outline a facile and versatile chemoenzymatic approach for production of targeted nanocarrier scFv conjugates using the bacterial trans-peptidase Sortase A (Srt A). Srt A efficiently mediates sequence-specific peptide ligation under mild conditions and has few undesirable side reactions. We first describe the production, purification and characterization of Srt A enzyme and a scFv construct which targets activated platelets, called scFvanti-GPIIb/IIIa. Following this, our protocol illustrates the chemoenzymatic modification of the antibody at the C-terminus with an orthogonal click chemistry linker. This avoids any random attachment to the biologically active antigen binding site of the antibody. Finally, we describe the modification of a nanoparticle surface with scFv attachment via two methods: (1) direct Sortase-mediated conjugation; or (2) a two-step system which consists of scFv Sortase-mediated conjugation followed by strain promoted azide-alkyne cycloaddition. Finally, methodology is described to assess the successful assembly of targeted particles.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Imunoconjugados/genética , Engenharia de Proteínas/métodos , Anticorpos de Cadeia Única/genética , Sequência de Aminoácidos/genética , Aminoaciltransferases/genética , Anticorpos/genética , Anticorpos/imunologia , Antígenos/imunologia , Azidas/química , Proteínas de Bactérias/genética , Química Click/métodos , Reação de Cicloadição/métodos , Cisteína/genética , Cisteína/imunologia , Cisteína Endopeptidases/genética , Humanos , Imunoconjugados/imunologia , Lisina/genética , Lisina/imunologia , Nanomedicina , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Cadeia Única/imunologia
16.
Macromol Rapid Commun ; 40(10): e1800911, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30747472

RESUMO

Brush polymers are highly functional polymeric materials combining the properties of different polymer classes and have found numerous applications, for example, in nanomedicine. Here, the synthesis of functional phosphonate-ester-bearing brush polymers based on poly(2-oxazine)s is reported through a combination of cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazine and reversible addition-fragmentation chain transfer (RAFT) polymerization. In this way, a small library of well-defined (D ≤ 1.17) poly(oligo(2-ethyl-2-oxazine) methacrylate) P(OEtOzMA)n brushes with tunable lower critical solution temperature (LCST) behavior and negligible cell toxicity is prepared. Upon deprotection, the phosphonic acid end-group of the P(OEtOzMA)n brush enables the successful grafting-onto iron oxide nanoparticles (IONPs). Colloidal stability of the particle suspension in combination with suitable magnetic resonance imaging (MRI) relaxivities demonstrates the potential of these particles for future applications as negative MRI contrast agents.


Assuntos
Meios de Contraste/química , Nanopartículas/química , Organofosfonatos/química , Poliaminas/química , Cátions , Coloides/química , Meios de Contraste/síntese química , Ésteres/química , Compostos Férricos/química , Humanos , Imageamento por Ressonância Magnética , Metacrilatos/química , Poliaminas/síntese química , Polimerização , Temperatura
17.
Sci Transl Med ; 9(411)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021167

RESUMO

Protecting the heart after an acute coronary syndrome is a key therapeutic goal to support cardiac recovery and prevent progression to heart failure. A potential strategy is to target cardiac glucose metabolism at the early stages after ischemia when glycolysis is critical for myocyte survival. Building on our discovery that high-density lipoprotein (HDL) modulates skeletal muscle glucose metabolism, we now demonstrate that a single dose of reconstituted HDL (rHDL) delivered after myocardial ischemia increases cardiac glucose uptake, reduces infarct size, and improves cardiac remodeling in association with enhanced functional recovery in mice. These findings applied equally to metabolically normal and insulin-resistant mice. We further establish direct effects of HDL on cardiomyocyte glucose uptake, glycolysis, and glucose oxidation via the Akt signaling pathway within 15 min of reperfusion. These data support the use of infusible HDL preparations for management of acute coronary syndromes in the setting of primary percutaneous interventions.


Assuntos
Lipoproteínas HDL/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Animais , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Miocárdio/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Adv Healthc Mater ; 6(16)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28509442

RESUMO

Therapeutic nanoparticles hold clinical promise for cancer treatment by avoiding limitations of conventional pharmaceuticals. Herein, a facile and rapid method is introduced to assemble poly(ethylene glycol) (PEG)-modified Pt prodrug nanocomplexes through metal-polyphenol complexation and combined with emulsification, which results in ≈100 nm diameter nanoparticles (PtP NPs) that exhibit high drug loading (0.15 fg Pt per nanoparticle) and low fouling properties. The PtP NPs are characterized for potential use as cancer therapeutics. Mass cytometry is used to quantify uptake of the nanoparticles and the drug concentration in individual cells in vitro. The PtP NPs have long circulation times, with an elimination half-life of ≈18 h in healthy mice. The in vivo antitumor activity of the PtP NPs is systematically investigated in a human prostate cancer xenograft mouse model. Mice treated with the PtP NPs demonstrate four times better inhibition of tumor growth than either free prodrug or cisplatin. This study presents a promising strategy to prepare therapeutic nanoparticles for biomedical applications.


Assuntos
Antineoplásicos , Nanopartículas/química , Neoplasias/metabolismo , Fenóis , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nanomedicina , Fenóis/química , Fenóis/farmacocinética , Fenóis/farmacologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biomaterials ; 134: 31-42, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28453956

RESUMO

Magnetic resonance imaging (MRI) is a powerful and indispensable tool in medical research, clinical diagnosis, and patient care due to its high spatial resolution and non-limited penetration depth. The simultaneous use of positive and negative MRI imaging that employs the same contrast agents will significantly improve detection accuracy. Here we report the development of functional multimodal iron oxide nanoparticles for targeted MRI of atherothrombosis using a combination of chemical and biological conjugation techniques. Monodisperse, water-soluble and biocompatible ultra-small magnetic dual contrast iron oxide nanoparticles (DCIONs) were generated using a high-temperature co-precipitation route and appeared to be efficient positive and negative dual contrast agents for magnetic resonance imaging. Using a unique chemo-enzymatic approach involving copper-free click chemistry and Staphylococcus aureus sortase A enzyme conjugation, DCIONs were functionalized with single-chain antibodies (scFv) directed against activated platelets for targeting purposes. The DCIONs were also labelled with fluorescent molecules to allow for optical imaging. The antigen binding activity of the scFv was retained and resulted in the successful targeting of contrast agents to thrombosis as demonstrated in a range of in vitro and in vivo experiments. T1- and T2-weighted MRI of thrombi was recorded and demonstrated the great potential of dual T1/T2 contrast iron oxide particles in imaging of cardiovascular disease.


Assuntos
Plaquetas/fisiologia , Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Patologia Molecular/métodos , Animais , Células CHO , Cricetulus , Citometria de Fluxo , Humanos
20.
J Am Heart Assoc ; 6(2)2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28159824

RESUMO

BACKGROUND: Thrombolytic therapy for acute thrombosis is limited by life-threatening side effects such as major bleeding and neurotoxicity. New treatment options with enhanced fibrinolytic potential are therefore required. Here, we report the development of a new thrombolytic molecule that exploits key features of thrombosis. We designed a recombinant microplasminogen modified to be activated by the prothrombotic serine-protease thrombin (HtPlg), fused to an activation-specific anti-glycoprotein IIb/IIIa single-chain antibody (SCE5), thereby hijacking the coagulation system to initiate thrombolysis. METHODS AND RESULTS: The resulting fusion protein named SCE5-HtPlg shows in vitro targeting towards the highly abundant activated form of the fibrinogen receptor glycoprotein IIb/IIIa expressed on activated human platelets. Following thrombin formation, SCE5-HtPlg is activated to contain active microplasmin. We evaluate the effectiveness of our targeted thrombolytic construct in two models of thromboembolic disease. Administration of SCE5-HtPlg (4 µg/g body weight) resulted in effective thrombolysis 20 minutes after injection in a ferric chloride-induced model of mesenteric thrombosis (48±3% versus 92±5% for saline control, P<0.01) and also reduced emboli formation in a model of pulmonary embolism (P<0.01 versus saline). Furthermore, at these effective therapeutic doses, the SCE5-HtPlg did not prolong bleeding time compared with saline (P=0.99). CONCLUSIONS: Our novel fusion molecule is a potent and effective treatment for thrombosis that enables in vivo thrombolysis without bleeding time prolongation. The activation of this construct by thrombin generated within the clot itself rather than by a plasminogen activator, which needs to be delivered systemically, provides a novel targeted approach to improve thrombolysis.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Fibrinolíticos/uso terapêutico , Fragmentos de Peptídeos/biossíntese , Plasminogênio/biossíntese , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/uso terapêutico , Anticorpos de Cadeia Única/uso terapêutico , Terapia Trombolítica/métodos , Trombose/tratamento farmacológico , Plaquetas/efeitos dos fármacos , Western Blotting , Citometria de Fluxo , Humanos , Fragmentos de Peptídeos/efeitos dos fármacos , Plasminogênio/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/imunologia , Anticorpos de Cadeia Única/imunologia , Trombose/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...